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Abstract 

In this paper, we combine the theoretical result of Pontryagin's Minimum 
Principle and a new numerical method to obtain a fast algorithm for the tra- 
jectoiy design problem for a reusable launch vehicle. We work with the outer- 
loop equations for an aircraft and consider the angle-of-attack to be the input. 
We cast the trajectoty design problem as an optimal control problem and use 
Pontryagin's Minimum Principle to obtain first order necessary conditions. 
These are in flie form of a two-point boundary-value problem fTPBVP) and 
we solve them by means of the Modified Simple Shooting Method (MSSM). 
In recent work, die MSSM has been shown to be superior, both in speed and 
accuracy, for TPBVPs. 
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NOMENCLATURE 

TPBVP Two point boundary value problem 
MSSM Modified Simple Shooting method 
X State variables 
A Costate variables 
V Velocity of the air vehicle with respect 

to an earth fixed fi:ame 
7 Flight path angle 
X Downrange 
H Altitude 
L Lift 
D Drag 
CD Drag coefficient 
CL Lift coefficient 
m Mass of vehicle 
9 'Acceleration due to gravity 
T Time unit (90 s) 
a Angle of attack, the control parameter 
K\,K2 Parameters in cost function 
e,ei Tolerances in the MSSM algorithm 
n Hamiltonian function 

1. INTRODUCTION 

Recently several authors have studied the problem of tra- 
jectory redesign for hjrpersonic aircraft [7], [6]. The usual 
procedure for solving such problems is to set it up as a 
constrained optimal control problem. Lu and Schierman 
used direct methods to nimierically solve the optimal con- 
trol problems. Alternatively, one could vise Pontryagin's 
Minimum Principle to obtain first-order necessary condi- 
tions for the optimal control problem and obtain a two- 
point boundary-value problem (TPBVP). 

Originally created to solve two-point boundary value 
problems (TPBVPs), the Modified Simple Shooting 
Method (MSSM) has been shown to be superior, both in 
speed and accuracy, to known methods for solving TP- 
BVPs [2]. Since optimal control problems can be for- 
mulated with differential equations and boundary condi- 
tions, it seems feasible to propose that the MSSM could 
be used to solve problems in optimal control. Here, the 
original MSSM algorithm (given with detail in [2]) was 
altered and used in conjimction with Pontryagin's Mini- 
mum Principle in an attempt to solve an optimal control 
problem in trajectory generation. 

In this paper, we consider the problem of trajectory re- 
design of the unpowered reentry phase for a hypersonic 
air vehicle. We consider outer loop equations governing 
the motion of the center of mass and consider the angle of 
attack to be the input variable. The lift and drag forces 
for the aircraft considered were obtained from a polyno- 
mial neiural network approximation of experimental data. 
Effector deflections were chosen so that the aircraft un- 
derwent t'rinmied ffight. 

2, MODIFIED SIMPLE SHOOTING 

The Modified Simple Shooting Method has been used to 
successfully solve TPBVPs [2]. Using Pontryagin's min- 
immn principle [5], we can obtain first-order necessary 
conditions for an optimal control problem and apply an 
adapted version of the MSSM to solve the resulting TP- 
BVP. 
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Suppose we want to minimize the cost function 

J=        l{x,u)dt 
Jto 

(1) 

subject to 

x = fix,u), (2) 
x{to) = xo, x{tf) = Xf fixed, (3) 
K(-) € m- (4) 

The following equation can be formed from (1) and (2), 

m = -fLm-i'., (5) 

where A are called the costates. The pre-Hamiltonian is 
defined by 

W(x,u, A) = X'{t)f(x,u)+l{x,u). (6) 

Let x*{t),u*(t) be the optimal solution. Then Pontrya- 
gin's Minimum Principle provides the Hamiltonian [4],[5]: 

H{x*{t),u*{t),X{t))=   M  n{x*it),v,X(t)).    (7) 
ven(f) 

for all t € [to,*/]. The above equation can also be stated 
as: 

u*{t) = argmin H(x, v, A). (8) 

Equations (2),(3),(5), and (7) constitute a TPBVP. To 
solve the problem, one needs to compute the value of 
A(to)- Once this is done, the functions x{t), u{t), are 
known for all t 6 [to, tf]. We propose to use the MSSM 
[2] to solve this TPBVP. 

Two assumptions are needed for convergence of the algo- 
rithm [2]. 

Assumption 2.1: There exists an unique solution to the opti- 
mal control problem (2-5). 

Assumption 2.2: Let A(to) be the initial condition of the 
costates that results in the solution (x(t), A(t) to (2-5). For 
every initial condition A(to) within a small neighborhood of 
A*(to) there is a unique solution defined on [to, tf]. The solu- 
tion is continuously difFerentiable with respect to changes in 
the initial conditions of the costates. 

The algorithm proceeds as follows: Given a distance met- 
ric d(-,-) on R", 

• Choose A(0) and reference path ^(f) such that 0(to) = 
^0, ^{if) = Xf, and ^(t) is sufficiently close to the op- 
timal solution. Pick sufficiently small numbers ei and e 
such that ci > e. 
• At time-step k: 
- Compute u{k) using x{k),X{k) and (8). 
- Integrate (2), (5), and compute x{k +1), A(fc +1). 

- If d(<^(fc -I- l),x(A; + 1)) > ej, then apply the modi- 
fied Newton's method and correct A(0) so that d{^{k + 
1),a;(fc-H)) <e. Let fc = A;-Hi. 
- Else (we have reached the final time), apply the 

modified Newton's method and correct A(0) so that 
d(xf,x{tf)) < e. 
- Stop. 

Notice in this adapted version of the algorithm, initial 
values are guessed and corrected for the costates A. If Ci 
is too small, the numerical method might have difficulties 
in convergence. Rrom calculus of variations it is known 
that changes in the costates will affect the outcome of the 
states. Optimization of the control variable is performed 
at each step of the algorithm. 

3. REENTRY VEHICLE EXAMPLE 

The following equations are sometimes used to model a 
reentry vehicle during approach and landing. Here, only 
the equations of longitudinal motion are considered, de- 
scribing the motion of the center of mass of the vehicle 
subject to ejrternal forces. This set of equations applies 
primarily to the performance of the vehicle, while the sets 
of moment and elastic equations are less influential [1]. 

For f € [to, t/], the equations of motion are given as 

V   = 5sm7 
V "1               /      , 

(9) 

^        (my    ^°^^) (10) 

X   =   Vcos7 (11) 
H   =   ysin7, (12) 

where V is the velocity, 7 is the flight path angle, X is 
the downrange position, and H is the altitude. Lift and 
drag are given by 

L   =   qSCiia) (13) 
D   =   qSCoia) (14) 

q   =    IP{H)V^ (15) 

with the value p{H) as the standard atmospheric den- 
sity dependent upon the altitude H. The values Co and 
Ci are the coefficients for drag and lift, respectively and 
dependent upon the angle-of-attack, a (see Section 4 for 
details). 

Constraints on the control variable and states at any 
given time t are 

0° < Q < 15° (16) 
if(t)> 2177 it (17) 
y(t) > 290 ft/sec (18) 



The cost function, used to minimize the pitching moment 
Mo of the wing body, is 

J= [ [Kiia-adcsf + Ki^] dt (19) 
Jo 

where ajes = 5°, the angle at which the minimum wing- 
body static pitching moment occurs for the vehicle. 

For this example, the initial conditions given for f = 0 
seconds are 

V{0) =   466 fl/sec (20) 

7(0) =   -29° (21) 

X(0) =   -15754 ft (22) 
H{0) =   10066 ft. (23) 

The final condition is H{tf) = 2274 ft, with constraints 
on the final values for V, X and H as follows. 

Vitf) > 342 

0 ft < Xitf) < 6000 ft 

Hitf) > -39 fl/sec (24) 

Using the constraint on H, one may obtain a final con- 
straint 7(t/) > -6.5°. 

4. NUMERICAL RESULTS' 

Before applying the algorithm, the equations of motion 
(9-12) were scaled so that the solutions were of the same 
magnitude. Scaling constants were g = 32.2 ft/s and 
T = 90 s. Accelerations were scaled by g, velocities were 
scaled by gT, and positions were scaled by gT^. 

Each of the sources for lift and drag coefficients were ob- 
tained from a polynomial neural network (PNN) model 
of aerodynamics data containing the information for Uft 
and drag on a solid body with aerodynamic forces acting 
on it. A polynomial fit to this PNN was used as the first 
source of Hft and drag. The second source was created 
using the PNN in conjunction with an aircraft model to 
develop a table of aerodynamics data on an aircraft un- 
dergoing trimmed flight. 

Normal Flight Condition 

For the first attempt at solving this optimal control prob- 
lem, the lift and drag coefficients were approximated with 
polynomials of the angle of attack a [3]. 

C£)=0.0008a2-0.0015a-f-0.1269 (25) 

CL = 0.0737Q; - 0.0460 (26) 

The set of polynomials was the simplest form of the lift 
and drag coefficients to implement. Thus, it was used 
first to obtain an initial solution and to compare with 
future results. 

Optimization was accomplished using a necessary con- 
dition for the minimum of the Hamiltonian: if a is the 
optimal control for (2), then Ha{x,a,X,t) = 0. Ha was 
calculated and set equal to zero to get a formula for ob- 
taining the optimal control a. This routme is justified 
in that, for this cost function (1), Haa > 0, thus the 
extremal a is in fact a minimum. 

Thie algorithm obtained a solution in 2.18 seconds with 
four iterations of the loop (see Figm:e 1). Corrections 
to A(0) occurred until the solution at time k fell within 
ei = 0.15 of the reference trajectory. Integration was 
halted when the solution at the final time was within 
e — 0.01 of xi. For this case, the control profile stays 
within the given constraints for a (16) (see Figure 2). 

Normal Flight Condition with Trimmed Flight 

Using the MSSM with the tables reflecting Uft and drag 
coefficients from trimmed flight, results were obtained for 
a normal flight situation. 

TOMLAB's ucsolve function was used for the solution of 
(7). Convergence of the MSSM occurred after 331 sec- 
onds. The intermediate tolerance ei was set at 0.1, with 
the final tolerance e at 0.25. The control profile remains 
within bounds (see Figure 4). 

A Failure Case with trimmed flight 

Since the adapted version of the MSSM seemed to work 
sufiiciently well in solvmg a "normal" flight case, it was 
losed to attempt a solution for the case where one con- 
trol surface had failed to respond to commands. That is, 
one of the four control surfaces on the aircraft's body has 
failed and is locked in position. Failures of the aircraft 
control surfaces can cause increases in drag, decreases in 
lift, and overall instability of the aircraft. The pilot or pi- 
loting program then becomes incapable of deflecting the 
failed control surface to maintain stable flight. 

For this particular situation, the aircraft's left flap has 
failed at 30° down. This was modeled by the lift and drag 
coefficients, which were obtained firom a table of aerody- 
namics data formed from the PNN with an aircraft model 
whose left flap was deflected at 30° down. The same im- 
plementation for the MSSM was used as in Section 4. 
The final time was changed to tf — 81 seconds for feasi- 
bility. The tolerances were relaxed also, with e = 1 and 
El = 0.2. The algorithm took 2576 seconds to converge, 
and constraints were violated for V and H (24) (see Fig- 
ure 5). However, the control profile stays within the given 
constraints (Figure 6). ' 

5. CONCLUSIONS 

The MSSM was shown to be successful in solving the sen- 
sitive optimal control problem of trajectory design. The 
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Figure 1. States resulting from MSSM using polynomials for drag and lift coefficients 

unfailed case resulted in a reasonable solution and con- 
trol profile. It may be that the failed case is an infeasible 
problem to solve without allowing for some increased an- 
gular accelerations. More investigation is needed before 
substantial conclusions can be made on the failure situa- 
tion. 

Current research involves reformulating the problem to a 
time-invariant set of equations using the monotonically 
increasing function X{t). Future work includes attempt- 
ing other cost functions in place of (1). Other failures are 
to be explored using this algorithm. Continued research 
on this and better implementations of the algorithm will 
provide improved solutions for the trajectory design op- 
timal control problem. 
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Figure 4. Control profile from MSSM using tables for trimmed flight 
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